Image Retrieval Using Circular Hidden Markov Models with a Garbage State

نویسندگان

  • Jinhai Cai
  • Dominic Ee
  • Robert Smith
چکیده

Shape-based image and video retrieval is an active research topic in multimedia information retrieval. It is well known that there are significant variations in shapes of the same category extracted from images and videos. In this paper, we propose to use circular hidden Markov models for shape recognition and image retrieval. In our approach, we use a garbage state to explicitly deal with shape mismatch caused by shape deformation and occlusion. We will propose a modified circular hidden Markov model (HMM) for shape-based image retrieval and then use circular HMMs with a garbage state to further improve the performance. To evaluate the proposed algorithms, we have conducted experiments using the database of the MPEG7 Core Experiments Shape-1, Part B. The experiments show that our approaches are robust to shape deformations such as shape variations and occlusion. The performance of our approaches is comparable to that of the state-of-the-art shape-based image retrieval systems in terms of accuracy and speed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL

  Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...

متن کامل

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

Image Distance Using Hidden Markov Models

We describe a method for learning statistical models of images using a second-order hidden Markov mesh model. First, an image can be segmented in a way that best matches its statistical model by an approach related to the dynamic programming used for segmenting Markov chains. Second, given an image segmentation, a statistical model (3D state transition matrix and observation distributions withi...

متن کامل

Hidden Markov models using fuzzy estimation

In the conventional hidden Markov model, the model parameters are reestimated by an iterative procedure known as the Baum-Welch method. This paper proposes an alternative procedure using fuzzy estimation, which is generalised from the fuzzy c-means and the BaumWelch methods. An extension of this approach, which uses a garbage state to deal with outlier data is also proposed. Experiments using t...

متن کامل

Introducing Busy Customer Portfolio Using Hidden Markov Model

Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007